Automatic Detection of Whole Night Snoring Events Using Non-Contact Microphone

نویسندگان

  • Eliran Dafna
  • Ariel Tarasiuk
  • Yaniv Zigel
چکیده

OBJECTIVE Although awareness of sleep disorders is increasing, limited information is available on whole night detection of snoring. Our study aimed to develop and validate a robust, high performance, and sensitive whole-night snore detector based on non-contact technology. DESIGN Sounds during polysomnography (PSG) were recorded using a directional condenser microphone placed 1 m above the bed. An AdaBoost classifier was trained and validated on manually labeled snoring and non-snoring acoustic events. PATIENTS Sixty-seven subjects (age 52.5 ± 13.5 years, BMI 30.8 ± 4.7 kg/m(2), m/f 40/27) referred for PSG for obstructive sleep apnea diagnoses were prospectively and consecutively recruited. Twenty-five subjects were used for the design study; the validation study was blindly performed on the remaining forty-two subjects. MEASUREMENTS AND RESULTS To train the proposed sound detector, >76,600 acoustic episodes collected in the design study were manually classified by three scorers into snore and non-snore episodes (e.g., bedding noise, coughing, environmental). A feature selection process was applied to select the most discriminative features extracted from time and spectral domains. The average snore/non-snore detection rate (accuracy) for the design group was 98.4% based on a ten-fold cross-validation technique. When tested on the validation group, the average detection rate was 98.2% with sensitivity of 98.0% (snore as a snore) and specificity of 98.3% (noise as noise). CONCLUSIONS Audio-based features extracted from time and spectral domains can accurately discriminate between snore and non-snore acoustic events. This audio analysis approach enables detection and analysis of snoring sounds from a full night in order to produce quantified measures for objective follow-up of patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term recording and automatic analysis of cough using filtered acoustic signals and movements on static charge sensitive bed.

Reliable long-term assessment of cough is necessary in many clinical and scientific settings. A new method for long-term recording and automatic analysis of cough is presented. The method is based on simultaneous recording of two independent signals: high-pass filtered cough sounds and cough-induced fast movements of the body. The acoustic signals are recorded with a dynamic microphone in the a...

متن کامل

Efficient snoring and breathing detection based on sub-band spectral statistics.

Snoring, a common symptom in the general population may indicate the presence of obstructive sleep apnea (OSA). In order to detect snoring events in sleep sound recordings, a novel method was proposed in this paper. The proposed method operates by analyzing the acoustic characteristics of the snoring sounds. Based on these acoustic properties, the feature vectors are obtained using the mean and...

متن کامل

Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques

PURPOSE Breathing sounds during sleep are altered and characterized by various acoustic specificities in patients with sleep disordered breathing (SDB). This study aimed to identify acoustic biomarkers indicative of the severity of SDB by analyzing the breathing sounds collected from a large number of subjects during entire overnight sleep. METHODS The participants were patients who presented...

متن کامل

Sleep-Wake Evaluation from Whole-Night Non-Contact Audio Recordings of Breathing Sounds

STUDY OBJECTIVES To develop and validate a novel non-contact system for whole-night sleep evaluation using breathing sounds analysis (BSA). DESIGN Whole-night breathing sounds (using ambient microphone) and polysomnography (PSG) were simultaneously collected at a sleep laboratory (mean recording time 7.1 hours). A set of acoustic features quantifying breathing pattern were developed to distin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013